VARIATIONS OF GENERALIZED AREA FUNCTIONALS AND p-AREA MINIMIZERS OF BOUNDED VARIATION IN THE HEISENBERG GROUP

نویسنده

  • JENN-FANG HWANG
چکیده

We prove the existence of a continuous BV minimizer with C boundary value for the p-area (pseudohermitian or horizontal area) in a parabolically convex bounded domain. We extend the domain of the area functional from BV functions to vector-valued measures. Our main purpose is to study the first and second variations of such a generalized area functional including the contribution of the singular part. By giving examples in Riemannian and pseudohermitian geometries, we illustrate several known results in a unified way. We show the contribution of the singular curve in the first and second variations of the p-area for a surface in an arbitrary pseudohermitian 3-manifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Second Order Minimality Condition for Water-Waves Functionals

The goal of this paper is to derive in the two-dimensional case necessary and sufficient minimality conditions in terms of the second variation for the functional v 7→ ∫ Ω ( |∇v| + χ{v>0}Q ) dx, introduced in a classical paper of Alt and Caffarelli. For a special choice of Q this includes water waves. The second variation is obtained by computing the second derivative of the functional along su...

متن کامل

A Regularity Theory for Scalar Local Minimizers of Splitting-Type Variational Integrals

Starting from Giaquinta’s counterexample [Gi] we introduce the class of splitting functionals being of (p, q)-growth with exponents p ≤ q < ∞ and show for the scalar case that locally bounded local minimizers are of class C. Note that to our knowledge the only C-results without imposing a relation between p and q concern the case of two independent variables as it is outlined in Marcellini’s pa...

متن کامل

PREPRINT SERIES OF THE INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY Perturbed area functionals and brittle damage mechanics

Some Mumford-Shah functionals are revisited as perturbed area functionals in connection with brittle damage mechanics. We find minimizers ”on paper” for the classical Mumford-Shah functional for some particular two dimensional domains and boundary conditions. These solutions raise the possibility of validating experimentally the energetic model of crack appearance. Two models of brittle damage ...

متن کامل

Partial Regularity For Anisotropic Functionals of Higher Order

Higher order variational functionals, emerging in the study of problems from materials science and engineering, have attracted a great deal of attention in last few years (e.g. [4], see [5]). In particular, the regularity of minimizers of such functionals has been studied very recently. In [15] and [16] the partial Ck,α regularity has been established for quasiconvex integrals with a p-power gr...

متن کامل

A Relation Between Pointwise Convergence of Functions and Convergence of Functionals

We show that if (J,,} is a sequence of uniformly LI-bounded functions on a measure space, and if.f, -fpointwise a.e., then lim,,_(I{lf,, 1 -IIf,, fII) If I,' for all 0 < p < oc. This result is also generalized in Theorem 2 to some functionals other than the L P norm, namely I. /( J,, -(f, f) f ) -1 0 for suitablej: C -C and a suitable sequence (fJ}. A brief discussion is given of the usefulness...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011